
Layered Binary Templating

Martin Schwarzl, Erik Kraft, and Daniel Gruss

Graz University of Technology, Austria

Abstract. We present a new generic cache template attack technique,
LBTA, layered binary templating attacks. LBTA uses multiple coarser-
grained side channels to speed up cache-line granularity templating,
ranging from 64B to 2MB in practice and in theory beyond. We dis-
cover first-come-first-serve data placement and data deduplication dur-
ing compilation and linking as novel security issues that introduce side-
channel-friendly binary layouts. We exploit this in inter-keystroke timing
attacks and, depending on the target, even full keylogging attacks1, e.g.,
on Chrome, Signal, Threema, Discord, and the passky password man-
ager, indicating that all Chromium-based apps are affected.

1 Introduction

Techniques like Flush+Reload [77] advanced cache attacks from cryptographic [4]
to non-cryptographic applications operating on secret data have been the re-
search focus, e.g., breaking ASLR (address-space layout randomization) [35,28],
attacking secure enclaves [27,6,44,19], spying on websites and user input [41,69],
and covert channels [76,77,42,53]. In particular, user input, especially keystrokes,
has become a popular attack target for inter-keystroke timing attacks [61,50,56].
Gruss et al. [32] showed that libraries leak more information than just inter-
keystroke timings, e.g., distinguishing groups of keys.

Compilers and linkers [36] can facilitate or even introduce side-channel leak-
age [47,60], invisible on the source level, through optimizations targeting run-
time, memory footprint, and binary size. Similarly, JIT compilation can also
introduce timing side channels [7]. These side channels are typically invisible
in the source code and often remain undetected. Numerous works explored the
automatic identification of cache side-channel leakage, albeit with a focus on
cryptography and the goal of making code constant-time [13,9]. However, for
general-purpose applications, e.g., browsers, it is not feasible to linearize the
entire instruction stream to constant-time code, especially for different user in-
puts that trigger vastly different program behavior. Cache templating takes a
practical approach by scanning for leakage on real systems, providing a leakage
template either to a defender (to close the side channel) or an unprivileged at-
tacker who maps binaries as shared memory and infers events from side-channel
1 Demo: The user first announces via Signal messenger to send money to a friend,
then switches to Chrome to visit a banking website and enters the credentials there.
All keystrokes are correctly leaked. https://streamable.com/dgnuwk.

https://streamable.com/dgnuwk


2 M. Schwarzl, E. Kraft, D. Gruss

activity. The templating itself runs on an attacker-controlled system with full
privileges, a binary is mapped into the address space of the templating pro-
cess to profile which memory locations show side-channel activity upon specific
events. Since cache templating works with binary offsets it is entirely unaffected
by mechanisms such as ASLR. While the fine cache-line granularity is benefi-
cial in the attack phase, it also leads to extremely high templating runtimes.
For instance, templating the binary, shared libraries, and memory-mapped files
used by the Chrome browser (about 210MB) with the published cache tem-
plate attack tool [32] on our test system, would take 113.17 days. Unfortunately,
this prohibits integration of cache leakage analysis into development workflows.
Hence, we need to ask the following questions:

Which role does spatial granularity play for template attacks? Does a coarser
granularity bear benefits in the templating phase?

In this paper, we answer both questions with LBTA, Layered Binary Tem-
plating Attack. LBTA introduces the previously unexplored dimension of spatial
granularity into software-based templating attacks. LBTA combines the infor-
mation of multiple side channels that provide information at different spatial
granularity to accelerate the search for secret-dependent activity substantially.
Our templating starts with the channel with the most coarse spatial granularity
and, based on the activity, uses more fine-grained spatial granularity to detect
the exact location (cache-line granularity 64B).

Our evaluation of LBTA on state-of-the-art systems shows that a variety of
hardware and software channels with different granularity are available. We fo-
cus in particular on a combination of a software channel, the page-cache side
channel, with 4 kB granularity, and the cache side channel, with 64B granular-
ity. Page cache attacks are hardware-agnostic [30], resulting in cross-platform
applicability, i.e., our templater supports both Windows and Linux with the
4 kB page-cache side channel. We show that this two-layered approach already
speeds up cache templating [32] by three orders of magnitude (i.e., 1848x).

We evaluate LBTA on different software projects, including Chrome, Firefox,
and LibreOffice Writer. The most significant finding is that first-come-first-
serve data placement and data deduplication during compilation and
linking during compilation and linking introduce side-channel-friendly binary
layouts, with spatial distances of multiple 4 kB pages between key-dependent
data accessed during a keystroke. Using LBTA [62], we find distinct leakage
for all alphanumeric keys, allowing us to build a full unprivileged cache-based
keylogger using Flush+Reload that leaks all keystrokes from Chromium-based
applications involving password input fields, e.g., Chrome on banking websites,
popular messengers including Signal, Threema, Discord, and password manager
apps like passky. Based on our findings, we conclude that any app using the
Chromium framework should be considered affected [23]. In addition, we demon-
strate that where full keylogging is not possible, LBTA still finds enough leakage
for inter-keystroke timing attacks [61,50,79,20,32], e.g., on Firefox and LibreOf-
fice Writer.



Layered Binary Templating 3

We confirm that the Linux preadv2 syscall can be used instead of the now
mitigated mincore syscall [30] for page cache attacks [37] albeit with a lower
temporal resolution of about 2 seconds. Since system-level defenses like ASLR
have no effect on our attack, we provide a systematic discussion of the possible
mitigation vectors specific to LBTA.
Contributions. The main contributions of this work are:
1. We introduce a new dimension, side-channel granularity, into cache template

attacks and use it to speed up the templating by three orders of magnitude.
2. We show that the leakage discovered by LBTA can be exploited in hardware

(i.e., Flush+Reload) and software attacks (i.e., via the page cache).
3. We discover first-come-first-serve data placement and data deduplication gen-

erate amplify and introduce side-channel leakage, invisible on the source level.
4. We present inter-keystroke timing and, depending on the target, full keylog-

ging attacks, e.g., Chrome, Signal, and the passky password manager.
Responsible Disclosure. We responsibly disclosed our findings to the Chro-
mium team. The underlying issue is tracked under CVE-2022-2612. anonymized
(6.5, medium severity) and was patched in the M104 release in August 2022.
Outline. In Section 2, we provide the background. In Section 3, we explain
the LBTA building blocks. In Section 4, we describe first-come-first-serve data
placement and data deduplication. In Section 5, we evaluate LBTA on different
targets. In Section 6, we discuss mitigations, and we conclude in Section 7.

2 Background

In this section, we provide background on hard- and software cache attacks,
side-channel discovery, and compiler- and linker-introduced side channels.
Shared Memory Operating systems (OSs) apply various optimizations to
reduce the system’s general memory footprint. One such optimization is shared
memory, where the OS actively tries to remove duplicate data mappings. An
example would be shared libraries, such as the glibc, used in many programs,
and thus, can be shared between processes. Moreover, with the mmap respectively
LoadLibrary functions, a user program can request shared memory from the
OS by mapping the library as read-only memory. Another optimization to
reduce the memory footprint commonly used for virtual machines is memory
deduplication on a page-wise level. The OS deduplicates pages with identical
content and maps the deduplicated page in a copy-on-write semantic.
Deduplication The concept of deduplication is generic and can be applied
in the context of various memory systems to save memory. For storage sys-
tems, one example is cloud storage systems that deduplicate files to minimize
the amount of storage required [34,38]. For main memory, there are multiple
mechanisms: Copy-on-write avoids duplicating memory during process creation,
the OS’s page cache [30] avoids duplicating memory pages from the disk, and
the OS also avoid duplicating the zero page when zeroed memory is requested.
However, the most prominent example is data-based page deduplication [63].



4 M. Schwarzl, E. Kraft, D. Gruss

With data-based page deduplication, the OS or hypervisor scans the main mem-
ory page-wise and identifies identical pages, e.g., using hashes or byte-wise data
comparison, deduplicating them. In all above types of deduplication, attempting
to modify the deduplicated memory triggers a ‘copy-on-write’ operation which is
known to introduce side-channel leakage, e.g., for file deduplication [34,2], page
deduplication [63], from JavaScript [29,17] and even remotely [58].

While all above types of deduplication target memory, there is also deduplica-
tion in other contexts. In this paper, we focus on a different type of deduplication
that has little to do with the above or memory systems in general. We instead
focus on deduplication during compilation and linking. The goal of deduplica-
tion here is similar though, i.e., reducing memory usage, and improving runtime
performance due to reduced memory or cache utilization. However, the security
implications of deduplication during compilation and linking are unknown.
Cache Attacks Caches introduce exploitable timing differences between cached
and uncached data. While the first cache attacks targeted cryptographic prim-
itives [39,4], more recent ones target secure enclaves [27,6,44,19], monitor user
interaction and keystrokes [41,56,69], and build stealthy and fast covert chan-
nels [76,42,53]. The Flush+Reload attack technique requires shared memory with
the victim, e.g., shared libraries [77]. However, as Flush+Reload works on the
attacker’s own addresses pointing to the same physical shared memory, there is
no need to know the victim’s ASLR offsets, as file offsets are used instead.

Cache attacks were also demonstrated from JavaScript to spy on keystrokes
and break memory randomization [46,41,28]. Most cache attacks focus on hard-
ware caches with a 64B cache line granularity. Cache attacks on the TLB instead
have a spatial granularity of 4 kB, 2MB, 1GB, or 512GB [31,66].

In particular, for SGX, so-called controlled channels have been demonstrated
as powerful attack primitives [75,64,44] with high spatial and temporal resolu-
tion, as well as a very high accuracy. Controlled channels are side channels run-
ning with elevated privileges, e.g., kernel privileges, with a typical attack target
being secure enclaves that are protected against regular kernel access.

There are also software caches, e.g., the page cache in Linux and Windows.
Both Linux and Windows also offer functions to verify whether a specific virtual
address is resident in memory or not, namely mincore and QueryWorkingSetEx
respectively. Gruss et al. [30] demonstrated cache attacks on the page cache by
either using these functions or by measuring timing differences. Despite harden-
ing attempts on Linux and Windows, the Linux preadv2 system call can still be
used to mount cache attacks [37] in the same way as with the mincore syscall:
Using the RWF_NOWAIT flag, an attacker can observe whether a page is resident
in the page cache or not, yielding the same side-channel information as mincore.
The results of the preadv2 templating attacks can be found in Section 5.
Automated Discovery of Side Channel Attacks Templating attacks have
been first shown and mentioned on cryptographic primitives running on physi-
cal devices [13,49,43]. Brumley and Haka [9] first described templating attacks
on caches. Doychev et al. [22] presented a static analyzer that detects cache
side-channel leakage in applications. Gruss et al. [32] showed that the usage of



Layered Binary Templating 5

certain cache lines can be observed to mount powerful non-cryptographic at-
tacks, namely on keystrokes. Lipp et al. [41] showed cache attacks and cache
template attacks on ARM. Van Cleemput et al. [65] proposed using information
gathered in the templating phase to detect and mitigate side channels. Wang
used symbolic execution and constraint solvers to speed up cache templating of
cryptographic software [70]. Schwarz et al. [54] demonstrated template attacks
on JavaScript to enable host fingerprinting in browsers. Weiser et al. [72] and
Wichelmann et al. [73] showed that Intel PIN tools can be used to automat-
ically detect secret-dependent behavior in applications, especially in a crypto-
graphic context. Wang et al. [69] presented a similar automated approach to
detect keystrokes in graphics libraries. Carre et al. [10] mounted an automated
approach for cache attacks driven by machine learning. With that approach,
they were able to attack the secp256k11 OpenSSL ECDSA implementation and
extract 256 bits of the secret key. Brotzmann et al. [8] presented a symbolic
execution framework to detect secret-dependent operations in cryptographic al-
gorithms and database queries. Li et al. [40] demonstrated a neural network
to perform power analysis attacks automatically. Yuan et al. [78] demonstrated
that manifold learning can be used to detect and locate side-channel leakage in
media software.
Compiler-introduced Side Channels While developers typically focus on
the source code level and care is taken to not introduce side channels there, the
compiler translates the source code to a binary, essentially a different language.
However, this step can introduce program behavior that is not visible on the
source level and introduces or amplifies side-channel leakage. Page [47] demon-
strated that dynamic compilation in Java leads to power side-channel leakage
in a side-channel-secured library. Simon et al. [60] showed that mainstream C
compilers optimizations can break cryptographically secure code by introducing
timing side channels. Brennan et al. [7] showed that timing side channels can be
introduced by exploiting JIT compilation.

Due to this significant influence of compilers on side-channel leakage in bi-
naries, they are also frequently used for new mitigation proposals against side-
channel leakage [16,48,18,11,26,5].

3 Layered Binary Templating Attack

For large binaries, like the Chrome browser with multiple shared libraries (220MB),
templating with fine granularity like prior work [32,41,69], e.g., a cache line, be-
comes impractical. LBTA takes advantage of coarser granularity channels, which
usually are considered a disadvantage for the attacker. In this section, we present
the high-level view on LBTA and show how LBTA reduces the templating run-
time by three orders of magnitude (i.e., 1848x).

3.1 Threat Model

The templating (or profiling) runs on a fully attacker-controlled system with
any privileges the attacker wants to use to facilitate the templating. This system



6 M. Schwarzl, E. Kraft, D. Gruss

User

<input type="password"/>

Victim

handleKeystroke();

Attacker

1○ Profile

2○ Type

3○ Access cache
2○ Monitor

SW/HW Cache

Fig. 1: Overview of the LBTA

is assumed to have the same side channels as the victim system, such as the
page cache and CPU cache, and the same software versions as on the victim
system were deployed, e.g., from package repositories. For this reason, the typi-
cal template attack threat model only restricts the attacker in the exploitation
phase [32], which we follow in this work.

In the exploitation phase, the attacker runs an unprivileged attack pro-
gram on the victim’s system, possibly under a separate user account. Hence,
we assume the victim application is started independently by the victim user,
and cannot be started, stopped, or debugged by the attacker. This also excludes
“preloading”, which, e.g., on Wayland (the default Ubuntu display server), would
allow monitoring all inputs to the application [3]. For non-Wayland systems,
we assume that the attacker cannot use other keylogging techniques (e.g., on
X11 [1]), or Windows (e.g., using the getasynckeystate API call [68]), e.g.,
due to system hardening or enforced security policies. Some of the applications
we attack provide auto-fill features or are password managers. However, since we
focus on the keylogging scenario, we assume that the victim user enters the
password in these applications manually, i.e., the user does not use an auto-filler
or another password manager to unlock the password manager. Furthermore,
many websites set the autocomplete="off" option for sensitive input fields,
suppressing the in-built auto-fill and password management features.

3.2 High-Level Overview of the Templating Phase

Figure 1 illustrates the steps of LBTA. First, the attacker templates the library
and creates templates of the cache usage for different keystrokes. After the tem-
plating phase, the attacker monitors the cache usage to infer inter-keystroke
timings and, depending on the target, even distinguish key values.

3.3 Templating with Different Spatial Granularity

A novel aspect of LBTA is to utilize the spatial granularity of different side
channels, forming a practical and generic multi-layered approach.
64B Granularity. Previous cache template attacks [32] used cache-line granu-
larity (64B). One disadvantage of this approach is the runtime of the templating
phase. When templating a single cache line with Flush+Reload, we observe an
average runtime of 490 cycles (n = 1000000, σx = 20.35%). On a 4.0GHz CPU,



Layered Binary Templating 7

this would take 122.5 ns. The Chrome binary has a file size of about 210MB
leading to 2 949 120 addresses to template with Flush+Reload. This leads to a
runtime of 0.36 s for templating every cache line once. However, Gruss et al.
[32] describe that multiple rounds of Flush+Reload are required to get reli-
able cache templating results. Running an Intel 6700k CPU at 4.0GHz with a
Ubuntu 20.04, templating 1MB of the Chrome browser (version 100.0.4896.60)
with the provided implementation of Gruss et al. [32], we observe a runtime of
817.652 s for 1MB and a total runtime of 1.98 days for the full binary, including
shared libraries, of 210MB. Moreover, this templating tool only reports whether
a certain address was cached or not and does not match the cache hits with
the entered keystrokes. To template, for instance, the 57 different common keys
sequentially with the method by Gruss et al. [32], we would need an impracti-
cal total runtime of 113.17 days to obtain useful templates. We conclude that
such an approach is not feasible for browser developers as the code base changes
frequently, and releases sometimes occur on a monthly basis [14].
4 kB Granularity. Page cache attacks exploit the OS page cache, which works
at a coarser granularity of 4 kB [30]. Page cache attacks have the advantage of
working independent of the underlying hardware. To identify the exact memory
locations causing leakage, they also resorted to templating. However, they did
not combine this information with timing differences from hardware caches.

Our intuitive idea here is to combine the 4 kB-granularity side channel with
the more fine-grained side channel into a two-layered approach. Hence, we do
not template all cache lines on a 64B granularity but instead, filter memory
locations on a 4 kB granularity. Instead of 2 949 120memory locations, we then
only monitor 46 080memory locations for the Chrome example, i.e., a templating
runtime speedup of at least 64. In addition, the templating phase on the 4 kB
granularity level implicitly identifies locations exploitable via the page cache.

The templating phase runs on the attacker’s own machine (cf. Section 3.1).
Hence, we can use the page cache side channel or privileged channels, e.g.,
controlled-channel attacks [75] via page-table bits [64] during the templating,
i.e., we use the kernel’s idle bit for tracking. For the full Chrome binary (cf.
Section 3.5), this results in a runtime of only 1.47 hours for all 57 keystrokes.
2MB Granularity. Each page-table layer provides referenced bits that are
set by the hardware when a location in this region is accessed. The 2MB-
granularity side channel is also exposed via various side channels [31,66]. We
observe the activity on 2MB pages via the PMD paging structure and the
referenced bit. We use PTEditor [55] to check and clear the referenced bit of the
PMD, i.e., a 2MB page, with a runtime of 661.965 ns (n = 1000000, σx = 0.049%)
per check. Hence, to template the 57 different common keys in Chrome with 20
repetitions per key, we estimate the total runtime of templating to be about 0.15
seconds.

3.4 Beyond Huge Pages

LBTA extends to arbitrarily coarser granularity channels.



8 M. Schwarzl, E. Kraft, D. Gruss

1GB, 512GB and 256TB Granularity. For the 1GB granularity level and
beyond, we experimentally validated that we can again use controlled-channel
attacks [75,64], using the corresponding higher page-table layers. Following a
similar approach as for the previous levels, we use PTEditor to template and
clear the referenced bit for the single offset in a 1GB (respectively 512GB or
256TB) range. The runtime for checking and clearing the referenced bit on these
layers is the same as for the PMD (661.965 ns (n = 1000000, σx = 0.049%)). We
emphasize that scanning layers that exceed the binary size, e.g., the 1GB layer
for a 180MB binary, provides no additional information and does not reduce the
search space, as the search will always proceed to the next smaller layer for the
entire memory range then. Therefore, in the evaluation, we skip all layers that
exceed the binary size. Still, these layers of LBTA may become relevant in the
future with constantly growing binaries and libraries.2

3.5 Templating Phase Implementation

The high-level idea is that the templater tracks page usage and actively filters
pages not related to keystrokes to reduce the search space of pages to template
and, as a result, reduce the overall runtime of the templating. We implement
our templater in Python and provide the code in our Github repository3. The
templater takes as input the set of different keys, the PID or process names that
should be monitored, and the number of samples per key.

Algorithm 1 summarizes the steps of the templating. First, the templater runs
a warmup phase, where all keystrokes to template are entered once to load all
related memory locations into RAM. Then the templater collects all the memory
mapping information from all files from the target processes where activity has
been found. These memory mappings include all shared libraries. The templater
generates random key sequences based on the set of keys to template. For each
key in the sequence, the templater iterates over all the memory locations on
the current granularity level, and resets the access information, i.e., resets the
referenced or idle bit, or flushes the cache line depending on the side channel
used. Based on the number of samples, the templater computes the hit ratio
for each location. Subsequently, the templater repeats this step for all memory
locations above a specific hit ratio with the next lower spatial granularity. With
this search strategy, the templater continues down to the lowest level, where only
regions are templated that showed activity on coarser granularity. On the lowest
level, the templater determines a hit ratio for each single cache line.
Linux. On the upper layers, we start by obtaining the memory mappings for
the target process. On Linux, we read these mappings from procfs (with root
privileges in line with the threat model). We group the memory locations then
according to the most coarse granularity we use in our templating. By using the
referenced-bit side channel according to Algorithm 1, we narrow down the set
of memory locations for the next layer.
2 The Chrome binary had 100MB in 2017 and 180MB in 2022, an increase of 80%.
3 https://github.com/IAIK/LayeredBinaryTemplating

https://github.com/IAIK/LayeredBinaryTemplating


Layered Binary Templating 9

Algorithm 1: LBTA Templating Algorithm
Input: Set of keys K, target PIDs Pn, number of samples N
Output: hit ratio matrix of all memory mappings H
1: Enter all keys in K once // Warmup
2: Collect all valid memory mappings of Pn

(possibly from previous layer)
3: for i = 0; i < N ; i + + do
4: for each k ∈ K do
5: Reset memory mappings (reset referenced/idle bits or flush)
6: Enter key k
7: Check state for all present memory mappings (via interface or timing)
8: Compute hit ratios for k and update Hk

9: end for
10: end for
11: return H, and repeat algorithm for next layer

Windows. On Windows, we obtain a list of memory mappings using the
EnumProcessModules PSAPI call, which lists all loaded libraries and executa-
bles, and GetModuleInformation for their actual sizes. Subsequently, we again
use the referenced-bit channel to narrow down the set of memory locations
using Algorithm 1. Subsequently, we continue with the next layer.

4 kB Page Granularity While for the upper layers, we read referenced bits
using PTEditor [55], we use a more optimized approach for the page granularity.
Linux. Our page usage tracker iterates over active mappings, reads the idle bit
for the corresponding physical page from /sys/kernel/mm/page_idle/bitmap
and checks if the page was accessed. We start by resetting the bit so that the page
usage tracker is ready. We use the Python3 keyboard library to inject keystrokes
into an input field. After the templater performs the sequence of keystrokes, we
check all pages that are still in the candidate list for activity. A 1 at the page offset
in the bitmap means the page was not accessed. Conversely, if we observe a 0 at
the page offset, we reset the page offset and add it to the set of correlated pages to
track on the next layer. This approach is fully hardware-agnostic, implemented
in software in the Linux kernel. After each iteration, we reset the state again by
marking the pages as idle again and repeat the measurements.

In case of a sequential read access pattern, the Linux kernel speculatively
prefetches further pages of the same file after a new page was added to page
cache. This optimization is called readahead [33]. On Ubuntu 20.04 (kernel
5.4.0), the default read-ahead size is 128 kB and can be found in the sysfs
(/sys/block/<block_device>/bdi/read_ahead_kb). For file-mappings the ker-
nel performs a different optimization called read-around.4 There, the kernel
prefetches pages surrounded by the page causing the pagefault e.g., 16 pages
before the page causing the pagefault and 15 pages after. To reduce triggering
4 https://elixir.bootlin.com/linux/v5.4/source/mm/filemap.c#L2437



10 M. Schwarzl, E. Kraft, D. Gruss

read-ahead prefetching for sequential reads, we use the madvise system call with
the MADV_RANDOM flag to indicate a random read order.

Overlapping event (i.e., keystroke) groups for the current candidate page
and pages that might trigger the read-ahead of the current candidate page could
cause false positives in the Linux case. In addition, if the number of read-ahead
suppress pages is too small, false positives can occur. Our classifier tries to
reduce the number of false positives by checking out the read-ahead/read-around
windows and systematically rule out other keystrokes. Based on the results of the
templater, the classifier actively accesses surrounding pages from the target page
to suppress the read-ahead/read-around optimization. Note that the read-ahead
and read-around windows might overlap for some keys. If the keys to template
are not on the same 4 kB-page, we can still distinguish two keys by checking the
first and last surrounded pages being accessed. The templater actively creates
warnings in the templating phase in case the keys are still indistinguishable.
Windows. Windows uses a different page replacement strategy with work-
ing sets [52]. For the page usage tracker on Windows, we use the PSAPI call
QueryWorkingSetEx and monitor the Shared, ShareCount and Valid flags. If
the page is marked as valid and shared and the share count is larger than 1, we
mark the page as used. For the reset, EmptyWorkingSet is used to remove the
pages from all workings sets. This PSAPI call is only available for unprotected
processes, which is no issue during the templating phase (cf. Section 3.1).

On Windows, we observed no prefetching optimization within working sets,
i.e., read-ahead does not affect hit ratio or spatial accuracy. Alternatively, the
templating could also be performed via controlled side channels [75,25,59], trac-
ing tools such as Intel PIN, machine learning [69,10] or architecturally monitoring
the accesses of pages using PTEditor [55].
Classifier. On the 4 kB level, we collect the page-hit ratios for all events (i.e.,
keys) and pages, showing the link between event and observable page hit. To
distinguish ‘no activity’ from ‘activity’, we also template a dummy idle event [32]
to measure which hit ratios are observed as a baseline. This idle event will not
be linked to any page hit but rather should represent unrelated system activity
the templater might pick up while profiling events. Our classifier links events or
groups of events with single page hits to keep the number of observed pages as
low as possible. This is a trade-off between search time and completeness of the
search that can be chosen differently for any LBTA on any target application.
Furthermore, a more sophisticated attack could increase detection accuracy from
monitoring multiple pages or cache lines for each event. However, we decided
to use the search-time-optimized path, as side-channel attacks typically cannot
observe an arbitrary amount of memory addresses anyway, i.e., we focus on a
more practical set of leaking addresses.

The algorithm to find a suitable page hit for an event e works as follows:

1. We normalize page-hit ratio vector for event e by average page-hit ratio
from other events (baseline activity). The resulting vector is the correlation
strength between each page and the event e.

2. We select the page with the highest correlation strength as a candidate.



Layered Binary Templating 11

3. If the candidate is not above the location-specific baseline activity, our
algorithm merges events (e.g., going from single keys to key groups) until it
is. We continue with the resulting event group E = {e1, . . . , eM} in step 1.

4. Once a candidate is found that is above the location-specific baseline ac-
tivity, the algorithm returns this page to subsequent templating layers.

While running, the classifier collects information on potential read-around prefetch-
ing pages to filter them out. After successful classification, the attacker has a
mapping of pages to events (i.e., key) and groups of events (i.e., groups of keys).

4 Compiler- and Linker-introduced Spatial Distance

Before we evaluate LBTA, we present one significant leakage-facilitating effect
that we discovered while applying LBTA on a variety of targets. This effect is
particularly critical as it originates in compiler optimizations in LLVM/clang
that are enabled by default and the available compiler flags that can control
this behavior come with serious limitations. Compiler optimizations aim for a
minimal program runtime, small memory footprint, and small binary size. More-
over, linker optimizations try to further optimize the binary in the linking stage.
We primarily found two effects to facilitate cache side-channel leakage: One is
the other is first-come-first-serve data placement in readonly sections, the other
one is data deduplication during compilation and linking. While mem-
ory deduplication at runtime has been explored as a security risk already (cf.
Section 2), data deduplication (e.g., of strings) during compilation is not widely
known and its security implications are entirely unexplored. The security of
constant-time implementations has been analyzed for side channels being intro-
duced by compilers [47,65,60,7]. In this section, we show that deduplication in
combination with first-come-first-serve population during compilation (cf. Sec-
tion 4.2) and linking (cf. Section 4.3) can amplify this effect by increasing the
chance that secret-dependently accessed victim data is placed in an attacker-
facilitating way. Deduplication can also be performed at the linking stage. The
spatial distance between secret-dependent accesses can be introduce by both
compiler and linker optimizations. We present two scenarios that we also found
in widely used real-world applications, where the placement of read-only data,
especially strings, amplifies side-channel leakage dramatically.

4.1 First-Come-First-Serve Data Placement

Lookup tables are frequently used to speed-up memory accesses and store con-
stant data like locality strings. For the developer, it is not transparent how
constants are stored in the compiled binary. Thus, even if the code seems to be
placed in a cache line, i.e., 64B granularity, the compiler might reorder strings
and add more spatial granularity between data. One optimization to reduce the
binary size is to only populate the read-only data section if the compiler observes



12 M. Schwarzl, E. Kraft, D. Gruss

Data Compiler Binary

DataA

DataB

DataC

DataD

DataE

DataF

DataG

DataH

DataI

DataJ

DataA

DataD

DataHP
lace

data

used

unused

unused

used

unused

unused

unused

used

unused

unused

Fig. 2: First-come-first-serve population of the .rodata section in the binary.

1 struct MapEntry {
2 const char* key;
3 const char* value;
4 };
5 #define LANGUAGE_CODE(key,value) \
6 { key, value }
7 #define MAP_DECL constexpr MapEntry mappings[] = MAP_DECL {
8 LANGUAGE_CODE("KeyA","DataA"), LANGUAGE_CODE("KeyB","DataB")
9 };

10 #undef MAP_DECL
11 void string_funcA(vector<string>& v) {
12 string local_ro_string = "DataB";
13 v.push_back(local_ro_string);
14 string padding_string = "<64-byte-string>";
15 v.push_back(padding_string);
16 }
17 void string_funcB(vector<string>& v) {
18 MapEntry k1 = mappings[0]; //KeyA
19 v.push_back(k1.value);
20 MapEntry k2 = mappings[1]; //KeyB
21 v.push_back(k1.value);
22 }

Listing 1.1: Strings are deduplicated in the binary and could lead to spatial
distance between readonly-strings in the same array in combination with first-
come-first-serve data placement.

that only certain indices of a lookup table are accessed. If the developer uses a
macro to dynamically populate a lookup table, e.g., with key mappings or simi-
lar, compilers do not insert all elements into the read-only section of the binary
to reduce the binary size. Instead, the compilers use a first-come-first-serve data
placement strategy to place the data in the read-only section. Figure 2 illustrates
how data can be placed in .rodata section caused by this strategy.

4.2 Data Deduplication during Compilation

Another optimization facilitating cache attacks, also in combination with the
first-come-first-serve data placement we just discussed, is data deduplication
during compilation. Deduplicating strings can reduce the binary size significantly
but also the memory resident size when running the program, as strings do



Layered Binary Templating 13

Data Compiler Binary

KeyA

KeyB

KeyC

KeyD

KeyA

KeyB

KeyC

KeyD

KeyA

KeyB

KeyC

KeyD

0x21000

0x22000

0x23000

0x24000

D
eduplicate

strings

(a) Compiler

Data Hash-Tables Binary

KeyA

KeyB

KeyC

KeyD

KeyA

KeyB

KeyC

KeyD

HT 1

HT 2

HT 3

HT 3

KeyA

KeyB

KeyC

KeyD

0x21000

0x22000

0x23000

0x24000

Write

(b) Linker

Fig. 3: String deduplication in the compiler and linker causing spatial distance
in .rodata section of the binary.

not have to be kept in memory multiple times. Figure 3a demonstrates how
string deduplication can introduce spatial distance in sections of the binary, for
instance, the .rodata section. C/C++ compilers deduplicate strings that occur
more than once in the source code. Listing 1.1 illustrates a situation where
string deduplication can be performed. Both the lookup table mappings and the
function string_funcA contain the string DataA. The compiler traverses over
the functions, and DataB is first inserted into the .rodata section. Again, data
processed by the compiler (padding) could cause spatial distance between DataA
and DataB. Before the compiler inserts DataB (mappings[1] in string_funcB),
the compiler checks for duplicates and only points to the existing occurrence of
DataB in the .rodata for all future usages. We evaluate Listing 1.1 for GCC
and Clang. For Clang, we observe again for all optimizations levels the ordering
DataA.<64-byte-string>.DataB in the .rodata section. For GCC, we observe
the same result that for optimization levels O0/O1, both values are populated
next to each other in the .rodata (DataA.DataB). For the other levels, the small
strings are encoded as immediate values.

4.3 Deduplication in the linking step.

As we showed, string deduplication can cause spatial distance between strings
and enable side-channel attacks in the compile step. For large software projects
such as the Chromium project, it is important to merge strings also across object
files. Since 2017, lld uses multiple hash tables to compensate some of the over-
head caused by this link-time optimization by increasing concurrency using hash
tables that can be accessed in parallel [51]. However, as there are multiple tables,
inserting merged strings can cause a different layout for strings in the .rodata
section than in the final linked binary. Figure 3b illustrates how the concurrent
merging can lead to spatial distance in the final binary. With the highest opti-
mization level of lld linker, i.e., -O2 [45], the linker merges duplicate substrings
contained in larger strings. The smaller substring will be removed, and the tail
of the larger string is used to index the substring. The security implications of
string deduplication need to be considered in software projects since large spatial



14 M. Schwarzl, E. Kraft, D. Gruss

distance between secret dependent values, such as different key inputs, can lead
to leakage of all user input, as we show in Section 5.

5 Evaluation and Exploitation Phase

In this section, we evaluate our templater on large binaries, such as browsers,
that have not been targeted with templating attacks so far. We evaluate how well
the templates work in the exploitation phase in terms of the attack F-Score. For
the exploitation phase, we, the attacker, runs without privileges on a default con-
figured system, with background activity (running e.g., browser, mail client, chat
clients, music and video streaming, virus scanning, system updates running, etc.)
leading to a realistic amount of system activity and noise. Overall we found that
Flush+Reload is extremely noise-resilient, in line with previous works [77,32].
We also focus on widespread Chromium-based products and demonstrate that
they are susceptible to LBTA. We analyze the root cause for the leakage and
show that it is caused by a compiler optimization. Table 1 lists all the evaluated
applications, including the Chromium-based browsers and applications, Firefox,
and LibreOffice Writer.
Templating of HTML form input fields Chrome. We first run our tem-
plating tool while generating keystrokes. We run our templater on an Intel i7-
6700K with a fixed frequency of 4GHz running Ubuntu 20.04 (kernel 5.4.0-
40) on Chrome version 100.0.4896.60. To get more accurate results during the
templating phase, we recommend dropping the active caches before executing
the templater via procfs (/proc/sys/vm/drop_caches). Moreover, we blacklist
file mappings from the /usr/share/fonts/ as they lead to inconsistent results
during the evaluation phase. Our templater traces 57 different key codes of a
common US_EN keyboard in HTML password fields over the total size of mem-
ory mappings in Chrome of 209.81MB (including the main binary and shared
libraries). For each key code, we sample 20 times. On average, we observe a
runtime of 1.47 hours (n = 10, σx = 0.33%) for 57 key codes, including the time
for key classification. For a single key code, the runtime is 92 seconds. For com-
parison, the cache template attack implementation by Gruss et al. [32] takes
113.17 days to template the same files. Thus, with 1.47 hours LBTA speeds up
the templating by a factor of 1848.
Leakage Source in Chrome. As we discovered the page offsets related to
the different keystrokes, we want to find the exact cache line causing the cache
leakage. We extend our monitor with Flush+Reload to determine the cache line
within the page. To speed up the templating time and obtain precise informa-
tion on which cache line has the highest correlation, we disable most of the Intel
prefetchers by writing the value 0xf to MSR 0x1a4 [67], as otherwise multiple
cache lines would have the highest correlation. We map the Chrome binary as
shared memory and perform Flush+Reload on all mapped cache lines to deter-
mine the corresponding cache lines for each key. We analyze the Chrome binary
and lookup the offsets causing the leakage for a specific keystroke. Each cache line
causing the leakage of a certain character contains a string for the key event, e.g.,



Layered Binary Templating 15

.rodata

KeyA

KeyB

KeyC

KeyD

User

Type C Page / Cache Line accessed

Fig. 4: Key code strings in the .rodata section introduce cache leakage.

“KeyA”. We observe that all offsets lie in the read-only data (.rodata section
of the binary. The leakage source are key-dependent accesses to the key code
strings in the dom code table,5 e.g., DOM_CODE(0x070004, 0x001e, 0x0026,
0x001e, 0x0000, "KeyA", US_A);. Figure 4 illustrates the leakage source for a
user typing in a certain character and the corresponding DOM_CODE for the UI
event. To verify if the leakage is related to string deduplication, we download the
Chromium source, disable the string deduplication -fno-merge-all-constants
and rebuild the Chromium browser. We still observe, that the single keystrokes
are spread over multiple pages in the .rodata section, which can still be ex-
ploited by the attacker despite the overheads in binary size and execution run-
time caused by disabling the optimization. Hence, the compiler flag to disable
string deduplication does not fully close the side channel. As a next step, we
analyze the compiled object files after the build process. We observe that the
created object file keycode_converter.o still contains all the key event strings
adjacent to each other in the binary. This indicates that the linker introduces the
spatial distance between key event strings. We perform a binary search on older
Chrome binaries from a public Github repository containing archived Chrome
Debian packages [71] to see when the spatial distance for key event strings was
introduced. As a result, we observe that between version 63 and 64 of Chrome
(year 2017), the single key event string was placed in the .rodata at differ-
ent 4 kB pages. According to [51], the linker optimizations have been constantly
improved since 2017. As discussed in Section 4, the parallelism in string dedupli-
cation can also cause spatial distance between key events. Disabling the string
merging optimization is currently only possible by disabling all optimizations us-
ing optimization level O0 for the linking with -Wl,-O0. This removes the spatial
distance between the key event strings but comes with a substantial overhead
as optimizations are disabled. At any higher optimization level, e.g., -Wl,-O1,
the spatial distance reappears as strings are again deduplicated. This confirms
that one of the effects we exploit is introduced by the linker. In comparison to
state-of-the-art keyloggers on Linux like xkbcat [1], our keylogger does not rely
on running as the same user within the same X-session. We verify this by running
our keylogger as a different user and can still recover the keys from Chrome.

5 https://source.chromium.org/chromium/chromium/src/+/main:ui/events/
keycodes/dom/dom_code_data.inc

https://source.chromium.org/chromium/chromium/src/+/main:ui/events/keycodes/dom/dom_code_data.inc
https://source.chromium.org/chromium/chromium/src/+/main:ui/events/keycodes/dom/dom_code_data.inc


16 M. Schwarzl, E. Kraft, D. Gruss

0 1 2 3 4 5 6 7 8 9

115 0 0 0 0 0 1 0 0 43

0 1 2 3 4 5 6 7 8 9

5 185 0 0 0 0 0 0 0 47

0 1 2 3 4 5 6 7 8 9

0 0 165 0 0 0 0 0 0 53

0 1 2 3 4 5 6 7 8 9

2 0 0 178 0 0 0 0 0 45

0 1 2 3 4 5 6 7 8 9

0 0 0 0 171 0 0 0 0 49

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 173 0 0 0 56

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 156 0 0 51

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 169 0 58

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 165 52

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 140

0 1 2 3 4 5 6 7 8 9

0x1521203

0x151b9bd

0x1513d05

0x1510118

0x150d59a

0x150b526

0x1509a35

0x1508991

0x1506eb8

0x1505e5b

Fig. 5: Cache-hit ratio using Flush+Reload for all digits letters in Chrome.

Keylogging in Chrome with Flush+Reload. We run our monitor in three
experiments for 180 seconds with all lowercase alphanumeric characters and ob-
serve cache activity for every single keystroke. The first experiment runs with
fast user input with 1ms between each keystroke. We count cache hits following
a keystroke as true positives if they occur on the cache line that is correct accord-
ing to our template and as false positive otherwise. To obtain the number of false
positives, we run the monitor in a second experiment without performing any
keystrokes in the input field, i.e., idling. To complete our data on false negatives
and true positives, we run the monitor in a third experiment while performing
user input with 1 s between each keystroke. Over the total 540 second measure-
ment time frame, we observed no false negatives. Figure 7 (Appendix) shows the
cache-hit ratio for the cache lines detecting lowercase letters in Chrome. Figure 5
shows the cache-hit ratio for the cache lines detecting numeric digits in Chrome.
As shown from Figure 5, the different digits can be highly-accurately classified.
As can be seen, the cache line accessed for digit 9 also contains other data that
is constantly accessed by code handling other events in Chrome. Therefore, the
cache line is constantly accessed also in an idle state and, in practice, cannot be
used to spy on digit 9. From all the 36 alphanumeric keys, this is the only char-
acter where code or data is co-located with other (unrelated) frequently accessed
code or data. The F-Score is the harmonic mean of precision and recall. Section 5
illustrates the F-Score for all alphanumeric characters. We also observed that a
single keystroke causes up to three cache hits. These cache hits could be related
to the window events key_up, key_pressed and key_down. To avoid printing
the same character multiple times, a cache miss counter between the keystrokes
can be used [32]. Note that multiple cache lines can be considered to further
increase the accuracy of the keylogger [41,69,10].
Keylogging with the page cache. To demonstrate that the Chrome leak-
age is not specific to a certain CPU, we run our keylogger on Chrome version
99.0.4844.84. Our test device runs Ubuntu 20.04 (kernel 5.18.0-051800-generic),
equipped with an AMD Ryzen 5 2600X CPU, 16GB of RAM, and a Samsung
970 EVO NVME SSD. We circumvent the read-around and read-ahead opti-
mization, as explained in Section 3.5. The keylogger uses the keystroke template
for the main Chrome binary and monitors the page cache utilization for the cor-
responding pages using the preadv2 syscall. It then reports the detected activity



Layered Binary Templating 17

a b c d e f g h i j k l mn o p q r s t u vw x y z 0 1 2 3 4 5 6 7 8 90

0.5

1

Key Event

F
1-
Sc
or
e

Flush+Reload Page Cache

Fig. 6: F-Score per key using Flush+Reload and page cache attacks for all al-
phanumeric characters in Chrome.

as keystrokes and subsequently evicts the page cache. While the page cache at-
tack using the mincore syscall was able to observe keystrokes on a fine temporal
granularity, we observe that using preadv2 comes with practical limitations. In
particular, with large eviction set sizes, guessed by the attacker, we conclude that
only very slow keyboard interaction with gaps of 2 s and more can be observed.
However, our evaluation of the page-cache side channel is generic and would also
apply to scenario where the mincore syscall is available, which allowed fast and
non-destructive continuous probing.

Based on the page cache accesses, we compute the page-hit ratio for Chrome
over the page cache. Figure 7 (Appendix) shows the page-hit ratio for the page
cache detecting alphanumeric letters in Chrome. For the Chrome version, we
observe that the characters b,m,9,h,y,x are grouped and cannot be uniquely
distinguished. We again perform the experiment in three phases to determine
true positive, false positive, and false negative rate by simulating fast, slow,
and no user input. Section 5 shows the F-Score for all alphanumeric characters
running the page cache attack. While most characters have very high F-Scores,
the character group b,m,9,h,y,x has a lower F-Score due to false positives when
other keys are pressed. Also, same as in the Flush+Reload attack, the character
9 suffers from a high number of false positives, negatively impacting the F-Score.
Electron. As we observed the leakage of keystrokes within the Chrome binary,
we further analyzed Chromium-based applications like the Electron framework.
As Chromium-based applications largely use the same keystroke handling code,
we can directly scan the .rodata section for the keystroke offsets. We evaluate
the templates on Chromium, Threema, Passky, VS-Code, Mattermost, Discord
and observe similar leakage rates to Chrome with F-Scores of at least 85%.
Table 1 contains the F-Scores for the different applications. Based on these clear
results, we deduce that, in principle, all Electron applications are susceptible to
LBTA and cache-based keylogging attacks.
Chromium Embedded Framework. The Chromium Embedded Framework
(CEF) is widely used and another interesting target for LBTA. While Electron
directly uses the Chromium API, CEF tries to hide the details of the Chromium
API [24]. CEF is actively run on more than 100 million devices [12]. We target
Spotify, and the Brackets editor application, which are both based on CEF. To
attack a CEF application, an attacker needs to read out the .rodata section from



18 M. Schwarzl, E. Kraft, D. Gruss

the shared library libcef.so. We run our monitor again with Flush+Reload
and observe an F-Score of 96% over the lowercase alphanumeric characters. For
Brackets (1.5.0), we observe, that the libcef.so was built with an older linker
version as the different key-event related strings for the lowercase alphanumeric
characters are co-located in three different cache lines. Therefore, we consider
all CEF applications to be susceptible to cache templating in principle. We
observe an F-Score of 94% for detecting key events. However, we also observe
that hardware prefetching practically thwarts the distinction of different blocks
in this scenario more than in the other attack scenarios, leaving only inter-
keystroke timing attacks as an option for the attack phase.

Firefox. Firefox uses a different build system where optimizations such as
data deduplication may still apply but with slightly different behavior than with
LLVM/clang. Therefore, we templated Firefox and found cache activity for each
keystroke in the libxul.so library (offset: 0x332d000). However, we did not find
leakage to distinguish keys. However, an attacker can still determine whether a
user is typing and perform an inter-keystroke timing attack [61,50,79,20,32] to
recover the keystrokes. The accuracy we observed for such an attack is 96%.

LibreOffice Writer. We profile the LibreOffice Writer version 6.4.2 on our
Linux setup. Our profiler shows that the library libQt5XcbQpa.so.5.12.8 (off-
set: 0x51000) offset reveals cache activity on all letters but no digits. The library
libswlo.so (0x53e000) leaks keystrokes reliably with an F-Score of 1.

Chrome on Windows. Chrome on Windows is built with a different compiler
and linker. Therefore, we tested Chrome versions 103.0.5060.53 and 114 on an
Intel i5-4300U notebook running Windows 10 (1803, 17134.1726). We use the
LoadLibrary function create read-only shared mappings with victim applica-
tions. We observe that in the chrome.dll (offset: 0xa4ee000) the different key
values are co-located instead of having a spatial distance of multiple 4 kB pages.
With our Flush+Reload cache monitor we are able to observe all key presses
and distinguish presses in the key groups A-F, G-S, T-Z and 0-4, and 5-9, with
an F-Score of 99%. However, due to prefetching we can only monitor a single
key group at a time. We also found user input leakage on many other locations,
e.g., msctf.dll (0x45000), and imm32.dll (0x3000).

Search bar. Templating user queries in the browser would tremendously reduce
the privacy of browsers. Running the templater on the search bar of Chrome
103.0.5060.53 revealed that the search bar uses a different method to load the
keys and there is only a single page (offset: 0x91d4000) in Chrome with cache
activity upon keystrokes. Based on our results, we conclude that the search
bar does not use the same internal structures for key events as HTML input
data. Still, the leakage we discovered enables inter-keystroke timing attacks on
keystrokes. Running the profiling experiment with all alphanumeric, we achieve
an F-Score of 99% for detecting key presses.



Layered Binary Templating 19

Table 1: Evaluated applications. Page cache (PC) and cache line (CL) indi-
cate whether precise keystroke attacks are possible on that granularity. Inter-
Keystroke Timing (IK) indicates that key events can be detected on the appli-
cation via Flush+Reload or the page cache.

Name Category CL PC IK (key groups) Avg. F-Score (Flush+Reload)
Chrome (99.0.4844.84) Browser 3 3 3 94%
Signal-Desktop (5.46.0) Private Messenger 3 3 3 98%
Threema (2.4.1) Private Messenger 3 3 3 84%
Passky (7.0.0) Password Manager 3 3 3 99%
VS-Code (1.69.1) Editor 3 3 3 85%
Chromium Browser (103.0.5060.114) Browser 3 3 3 99%
Mattermost-Desktop (5.1.1) Collaboration Platform 3 3 3 94%
Discord (0.0.18) Text and Voice Chat 3 3 3 98%

Spotify (1.1.84.716) Audio Streaming 3 3 3 96%
Brackets (1.2.1) Editor 7 7 3 94%

Chrome 103.0.5060.134(Windows) Browser 7 7 3 99%
Chrome 103.0.5060.53 (Search Bar) Browser 7 7 3 99%
libxul.so (Firefox 102) Browser 7 7 3 99%
LibreOffice Writer (6.4.2) Office Software 7 7 3 99%

6 Mitigation and Discussion

Different mitigation vectors could prevent either LBTA or the underlying leak-
age utilized in the exploitation phase, albeit at a significant performance and
usability cost. We identified five conditions for an attack to succeed:
Golden device availability Templating attacks consist of two phases. In
the templating phase, the attacker uses a setup that is similar to the victim
system [13,9,32]. This is trivial for cache attacks on most desktop and laptop
processors, as they are virtually identical in terms of attacks like Flush+Reload
(i.e., the processor has cache lines and eviction or flushing of these is possible).
Software diversity [18], in principle, could break the link between templating and
exploitation, but is not widely used. Thus, in practice, the vast majority of users
runs binaries obtained from the official repositories or websites, making it trivial
to create templates for them. Furthermore, even with software diversity, once
the attacker knows what the target byte sequences (e.g., strings) in the binary
are, the attacker can simply search for these on the victim system (without the
need for templating again) and attack the victim binary in the same way again.
Hence, we also consider software diversity no mitigation to LBTA.
Disable Compiler and Linker Optimizations For the Chromium example,
disabling the linker optimizations (deduplication and spatial distancing) would
reduce the accurate keylogging to inter-keystroke timings for key groups in 4
different cache lines. However, this may still enable inferring user input accu-
rately [61]. On the negative side, removing these optimizations typically increases
binary sizes and cache utilization due to runtime use of duplicated data. Note
that this type of deduplication and spatial distancing is introduced on the com-
piler and linker level, which is completely transparent to the OS. While the OS
could dynamically rewrite binary pages at runtime to counteract this behavior,



20 M. Schwarzl, E. Kraft, D. Gruss

this would introduce huge amounts of complexity, overhead, and the potential
for unhandled corner cases. Instead, the Chromium team opted for a compiler-
and linker workaround, which triggers the string placement explicitly by plac-
ing and initializing dummy data structures such that the current compiler and
linker versions do not spatially separate the secret data. However, this approach
is fragile as it depends on the specific behavior of the compiler.

Secret-dependent execution For cryptographic code, the state of the art
against side channels is the linearization to so-called constant-time code, i.e.,
constant code and data accesses, regardless of the secrets, albeit with a consid-
erable performance cost [15]. For general purpose code, always running all the
code and accessing all the data is infeasible. Different works linearized the control
flow of general purpose code [21,57,5] and observed a prohibitively high runtime
overhead for realistic workloads. Hence, the problem of secret dependency on
user input in large applications remains an open problem.

Side-channel observability Tools like CacheAudit [22] or CaSym [8] follow
the cryptography-focused notion of constant time to consider an application
leakage-free. However, in practice, distinguishing keys may be infeasible for an
unprivileged attacker when key-dependent execution exists but does not cross,
e.g., page or cache-line boundaries, depending on the side channel. In particular,
within a page, the hardware prefetcher is a substantial obstacle introducing spu-
rious cache activity on the target cache lines, foiling exploitation in practice [32].
The compiler could utilize this effect by grouping potentially secret-dependent
accesses, minimizing the number of cache lines data structures are spread across,
and placing strings interleaved with frequently used code or data.

Noise resilience Since user input cannot be triggered and repeated by the
attacker millions of times, noise resilience is also one condition. Hence, inducing
noise, unsuitable to secure cryptographic operations, can provide strong security
guarantees for user input [56]. A low number of memory accesses could substan-
tially limit the presented attacks, especially if user annotations of potentially
secret data tell the compiler where to add these accesses.

LBTA is also interesting as a defensive technique revealing leakage as part
of a continuous integration pipeline [74], revealing leakage that is not or not to
the actual extent visible to developers on the source level, but only in the binary
due to compiler and linker optimizations introducing these spatial distances.
Moreover, languages like JavaScript, Java, PHP, and Python also perform string
deduplication (under the term ‘string interning’) to reduce memory utilization,
potentially leading to similar effects.

We demonstrated that keystrokes in form input fields in Chrome can be
detected using cache attacks on hardware and software caches. While Chrome is
a valuable target, the dependency of many frameworks on the Chromium project,
such as CEF and Electron, leads to a significantly higher impact as browser-
based desktop applications, e.g., using the popular Electron framework [23], are
susceptible to accurate keylogging with our attack.



Layered Binary Templating 21

7 Conclusion

First-come-first-serve data placement and data deduplication during compilation
and linking facilitate side-channel leakage in compiled binaries. We show that
this effect can even induce side-channel leakage where, without these optimiza-
tions, no secret-dependent accesses cross a 64-byte boundary. The foundation to
discover this attack was our extension to cache template attacks, called Layered
Binary Templating Attacks, LBTA. LBTA is a scalable approach to templat-
ing that combines spatial information from multiple side channels. Using LBTA
we scan binaries compiled with LLVM/clang, which applies first-come-first-serve
data placement and deduplication by default. Our end-to-end attack is an un-
privileged cache-based keylogger for all Chrome-based / Electron-based applica-
tions, including many security-critical apps, e.g., the popular Signal messenger
app. While mitigation strategies exist, they come at a cost, and further research
is necessary to overcome the open problem of side-channel attacks on user input.

Acknowledgments

We want to thank our anonymous reviewers for valueable feedback on the draft.
This work was supported by a generous gift from Red Hat Research. We want
to thank Hanna Müller, Claudio Canella, Michael Schwarz and Moritz Lipp for
valuable feedback. Any opinions or recommendations expressed are those of the
authors and do not necessarily reflect the views of the funding parties.

References

1. Antti Korpi: xkbcat (2021), https://github.com/anko/xkbcat
2. Bacs, A., Musaev, S., Razavi, K., Giuffrida, C., Bos, H.: DUPEFS: Leaking Data

Over the Network With Filesystem Deduplication Side Channels. In: FAST (2022)
3. Baert, M.: wayland-keylogger (2022), https://github.com/Aishou/wayland-

keylogger
4. Bernstein, D.J.: Cache-Timing Attacks on AES (2005), http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf
5. Borrello, P., D’Elia, D.C., Querzoni, L., Giuffrida, C.: Constantine: Automatic

Side-Channel Resistance Using Efficient Control and Data Flow Linearization. In:
CCS (2021)

6. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software Grand Exposure: SGX Cache Attacks Are Practical. In: WOOT (2017)

7. Brennan, T., Rosner, N., Bultan, T.: JIT Leaks: inducing timing side channels
through just-in-time compilation. In: S&P (2020)

8. Brotzman, R., Liu, S., Zhang, D., Tan, G., Kandemir, M.: CaSym: Cache aware
symbolic execution for side channel detection and mitigation. In: S&P (2019)

9. Brumley, B., Hakala, R.: Cache-Timing Template Attacks. In: AsiaCrypt (2009)
10. Carre, S., Dyseryn, V., Facon, A., Guilley, S., Perianin, T.: End-to-end automated

cache-timing attack driven by Machine Learning. Journal of Cryptology (2019)
11. Cauligi, S., Soeller, G., Brown, F., Johannesmeyer, B., Huang, Y., Jhala, R., Stefan,

D.: FaCT: A flexible, constant-time programming language. In: SecDev (2017)

https://github.com/anko/xkbcat
https://github.com/Aishou/wayland-keylogger
https://github.com/Aishou/wayland-keylogger
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


22 M. Schwarzl, E. Kraft, D. Gruss

12. CEF: Chrome Embedded Framework (2022), https://github.com/
chromiumembedded/cef

13. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES (2002)
14. Chromium: Speeding up Chrome’s release cycle (2022), https://blog.chromium.

org/2021/03/speeding-up-release-cycle.html
15. Chung, S.C., Lee, J.W., Chang, H.C., Lee, C.Y.: A high-performance elliptic curve

cryptographic processor over GF(p) with SPA resistance. In: International Sym-
posium on Circuits and Systems (ISCAS) (2012)

16. Coppens, B., Verbauwhede, I., De Bosschere, K., De Sutter, B.: Practical miti-
gations for timing-based side-channel attacks on modern x86 processors. In: S&P
(2009)

17. Costi, A., Johannesmeyer, B., Bosman, E., Giuffrida, C., Bos, H.: On the effective-
ness of same-domain memory deduplication. In: European Workshop on Systems
Security. pp. 29–35 (2022)

18. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting Cache
Side-Channel Attacks Through Dynamic Software Diversity. In: NDSS (2015)

19. Dall, F., De Micheli, G., Eisenbarth, T., Genkin, D., Heninger, N., Moghimi, A.,
Yarom, Y.: Cachequote: Efficiently recovering long-term secrets of SGX EPID via
cache attacks. In: CHES (2018)

20. Diao, W., Liu, X., Li, Z., Zhang, K.: No Pardon for the Interruption: New Inference
Attacks on Android Through Interrupt Timing Analysis. In: S&P (2016)

21. Domas, C.: M/o/Vfuscator (2015), https://github.com/xoreaxeaxeax/
movfuscator

22. Doychev, G., Feld, D., Kopf, B., Mauborgne, L., Reineke, J.: CacheAudit: A Tool
for the Static Analysis of Cache Side Channels. In: USENIX Security Symposium
(2013)

23. Electron: Electron Apps (2022), https://www.electronjs.org/apps
24. Electron JS: Electron Internals: Building Chromium as a Library (2022),

https://www.electronjs.org/blog/electron-internals-building-chromium-
as-a-library

25. Fu, Y., Bauman, E., Quinonez, R., Lin, Z.: SGX-LAPD: Thwarting Controlled Side
Channel Attacks via Enclave Verifiable Page Faults. In: RAID (2017)

26. García, C.P., Brumley, B.B.: Constant-Time Callees with Variable-Time Callers.
In: USENIX Security Symposium (2017)

27. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache Attacks on Intel SGX. In:
EuroSec (2017)

28. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the Line: Prac-
tical Cache Attacks on the MMU. In: NDSS (2017)

29. Gruss, D., Bidner, D., Mangard, S.: Practical Memory Deduplication Attacks in
Sandboxed JavaScript. In: ESORICS (2015)

30. Gruss, D., Kraft, E., Tiwari, T., Schwarz, M., Trachtenberg, A., Hennessey, J.,
Ionescu, A., Fogh, A.: Page Cache Attacks. In: CCS (2019)

31. Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S.: Prefetch Side-Channel
Attacks: Bypassing SMAP and Kernel ASLR. In: CCS (2016)

32. Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches. In: USENIX Security Symposium (2015)

33. halolinux: Page Cache Readahead (2022), https://www.halolinux.us/kernel-
architecture/page-cache-readahead.html

34. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services, the case
of deduplication in cloud storage. IEEE Security & Privacy (6) (2010)

https://github.com/chromiumembedded/cef
https://github.com/chromiumembedded/cef
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://www.electronjs.org/apps
https://www.electronjs.org/blog/electron-internals-building-chromium-as-a-library
https://www.electronjs.org/blog/electron-internals-building-chromium-as-a-library
https://www.halolinux.us/kernel-architecture/page-cache-readahead.html
https://www.halolinux.us/kernel-architecture/page-cache-readahead.html


Layered Binary Templating 23

35. Hund, R., Willems, C., Holz, T.: Practical Timing Side Channel Attacks against
Kernel Space ASLR. In: S&P (2013)

36. John Richard Moser: Optimizing Linker Load Times (2006), https://lwn.net/
Articles/192624/

37. Jonathan Corbet: Fixing page-cache side channels, second attempt (2019), https:
//lwn.net/Articles/778437/

38. Keelveedhi, S., Bellare, M., Ristenpart, T.: DupLESS: Server-Aided Encryption
for Deduplicated Storage. In: USENIX Security Symposium (2013)

39. Kocher, P.: Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and
Other Systems. In: CRYPTO (1996)

40. Li, G., Liu, C., Yu, H., Fan, Y., Zhang, L., Wang, Z., Wang, M.: SCNet: A Neural
Network for Automated Side-Channel Attack. arXiv:2008.00476 (2020)

41. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: Cache
Attacks on Mobile Devices. In: USENIX Security Symposium (2016)

42. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano, C.,
Mangard, S., Römer, K.: Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS (2017)

43. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: WISA. Springer (2008)
44. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: How SGX amplifies the

power of cache attacks. In: CHES (2017)
45. nxmnpg.lemoda: Manual Pages - LD.LLD (2022), https://nxmnpg.lemoda.net/

1/ld.lld
46. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the

Sandbox: Practical Cache Attacks in JavaScript and their Implications. In: CCS
(2015)

47. Page, D.: A note on side-channels resulting from dynamic compilation. Cryptology
ePrint archive, Report 2006/349 (2006)

48. Rane, A., Lin, C., Tiwari, M.: Raccoon: Closing Digital Side-Channels through
Obfuscated Execution. In: USENIX Security Symposium (2015)

49. Rechberger, C., Oswald, E.: Practical template attacks. In: WISA (2004)
50. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My

Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: CCS
(2009)

51. Rui Ueyama: lld: A Fast, Simple and Portable Linker (2017), https://llvm.org/
devmtg/2017-10/slides/Ueyama-lld.pdf

52. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows internals. Pearson Edu-
cation (2012)

53. Saileshwar, G., Fletcher, C.W., Qureshi, M.: Streamline: a fast, flushless cache
covert-channel attack by enabling asynchronous collusion. In: ASPLOS (2021)

54. Schwarz, M., Lackner, F., Gruss, D.: JavaScript Template Attacks: Automatically
Inferring Host Information for Targeted Exploits. In: NDSS (2019)

55. Schwarz, M., Lipp, M., Canella, C.: misc0110/PTEditor: A small library to modify
all page-table levels of all processes from user space for x86_64 and ARMv8 (2018),
https://github.com/misc0110/PTEditor

56. Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C., Spreitzer, R., Man-
gard, S.: KeyDrown: Eliminating Software-Based Keystroke Timing Side-Channel
Attacks. In: NDSS (2018)

57. Schwarzl, M., Canella, C., Gruss, D., Schwarz, M.: Specfuscator: Evaluating Branch
Removal as a Spectre Mitigation. In: FC (2021)

58. Schwarzl, M., Kraft, E., Lipp, M., Gruss, D.: Remote Page Deduplication Attacks.
In: NDSS (2022)

https://lwn.net/Articles/192624/
https://lwn.net/Articles/192624/
https://lwn.net/Articles/778437/
https://lwn.net/Articles/778437/
https://nxmnpg.lemoda.net/1/ld.lld
https://nxmnpg.lemoda.net/1/ld.lld
https://llvm.org/devmtg/2017-10/slides/Ueyama-lld.pdf
https://llvm.org/devmtg/2017-10/slides/Ueyama-lld.pdf
https://github.com/misc0110/PTEditor


24 M. Schwarzl, E. Kraft, D. Gruss

59. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: Eradicating controlled-channel
attacks against enclave programs. In: NDSS (2017)

60. Simon, L., Chisnall, D., Anderson, R.: What you get is what you C: Controlling
side effects in mainstream C compilers. In: EuroS&P (2018)

61. Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing
Attacks on SSH. In: USENIX Security Symposium (2001)

62. statcounter Global Stats: Browser Market Share Worldwide (2022), https://gs.
statcounter.com/

63. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory Deduplication as a Threat to
the Guest OS. In: EuroSys (2011)

64. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling Your
Secrets Without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Ex-
ecution. In: USENIX Security Symposium (2017)

65. Van Cleemput, J., De Sutter, B., De Bosschere, K.: Adaptive compiler strategies
for mitigating timing side channel attacks. TDSC (2017)

66. Van Schaik, S., Giuffrida, C., Bos, H., Razavi, K.: Malicious Management Unit:
Why Stopping Cache Attacks in Software is Harder Than You Think. In: USENIX
Security Symposium (2018)

67. Viswanathan, V.: Disclosure of Hardware Prefetcher Control on Some Intel
Processors (2014), https://web.archive.org/web/20160304031330/https:
//software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-
control-on-some-intel-processors

68. Wajahat, A., Imran, A., Latif, J., Nazir, A., Bilal, A.: A Novel Approach of Un-
privileged Keylogger Detection. In: iCoMET (2019)

69. Wang, D., Neupane, A., Qian, Z., Abu-Ghazaleh, N., Krishnamurthy, S.V., Colbert,
E.J., Yu, P.: Unveiling your keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries. In: NDSS (2019)

70. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: CacheD: Identifying Cache-Based
Timing Channels in Production Software. In: USENIX (2017)

71. Webnicer Ltd: chrome-downloads (2022), https://github.com/webnicer/
chrome-downloads/

72. Weiser, S., Spreitzer, R., Bodner, L.: Single Trace Attack Against RSA Key Gen-
eration in Intel SGX SSL. In: AsiaCCS (2018)

73. Wichelmann, J., Moghimi, A., Eisenbarth, T., Sunar, B.: MicroWalk: A Framework
for Finding Side Channels in Binaries. In: ACSAC (2018)

74. Wichelmann, J., Sieck, F., Pätschke, A., Eisenbarth, T.: Microwalk-ci: Practical
side-channel analysis for javascript applications. arXiv preprint arXiv:2208.14942
(2022)

75. Xu, Y., Cui, W., Peinado, M.: Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. In: S&P (2015)

76. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of L2 cache covert channels in virtualized environments. In: CCSW
(2011)

77. Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: USENIX Security Symposium (2014)

78. Yuan, Y., Pang, Q., Wang, S.: Automated Side Channel Analysis of Media Software
with Manifold Learning. arXiv preprint arXiv:2112.04947 (2021)

79. Zhang, K., Wang, X.: Peeping Tom in the Neighborhood: Keystroke Eavesdropping
on Multi-User Systems. In: USENIX Security Symposium (2009)

https://gs.statcounter.com/
https://gs.statcounter.com/
https://web.archive.org/web/20160304031330/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://web.archive.org/web/20160304031330/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://web.archive.org/web/20160304031330/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://github.com/webnicer/chrome-downloads/
https://github.com/webnicer/chrome-downloads/


Layered Binary Templating 25

A Cache-hit ratios (extended)

The cache hit ratio for all lowercase characters with Flush+Reload can be seen
with Figure 8 and all alphanumeric characters for the page cache attack Figure 7.



26 M. Schwarzl, E. Kraft, D. Gruss

a c d e f g i j k l n o p q r s t u v w z 0 1 2 3 4 5 6 7 8 yb9mhx

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 98 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

0x14e7000

0x14e2000

0x14df000

0x14d2000

0x14c1000

0x14c0000

0x14be000

0x14bc000

0x14bb000

0x14ba000

0x14b9000

0x14b3000

0x14af000

0x14ab000

0x14aa000

0x14a9000

0x14a8000

0x14a2000

0x149b000

0x1494000

0x1492000

0x148f000

0x148e000

0x148c000

0x148b000

0x148a000

0x1521000

0x151b000

0x1513000

0x1510000

0x150d000

0x150b000

0x1509000

0x1508000

0x1506000

0x1505000

Fig. 7: Cache-hit ratio using a page cache attack for alphanumeric characters in
Chrome.



Layered Binary Templating 27

a b c d e f g h i j k l m n o p q r s t u v w x y z

99 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 2 0 0 8 7 0 0

2 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 146 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 148 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 156 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 107 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 137 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141

0x14e7e5b

0x14e24a8

0x14df043

0x14d2ab9

0x14c1a5e

0x14c0a76

0x14be05f

0x14bc5ad

0x14bb06c

0x14bae3b

0x14b981f

0x14b3350

0x14af573

0x14ab755

0x14aa938

0x14a9172

0x14a8e1c

0x14a2f87

0x149b36d

0x149411c

0x1492c1d

0x148f151

0x148e546

0x148cb27

0x148b08b

0x148ac19

Fig. 8: Cache-hit ratio using Flush+Reload for lowercase letters in Chrome.


	Layered Binary Templating

